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(iii) Because the information distinguishing struc- 
tures such as those in Figs. 1 and 2 will mainly reside 
in small intensity differences at high (sin 0)/;t, accu- 
rate determinations of absolute magnitudes for all 
odd-order anharmonic parameters are more likely to 
be achieved with neutron-diffraction techniques. A 
further inherent advantage of neutron diffraction is 
the possibility of maximizing the difference in magni- 
tude of the scattering lengths by varying the isotopic 
proportions of the atoms in a structure. 

Finally, a note of caution. When fourth-order terms 
(C jktm) a re  included in our PbTiO3 refinements, 
parameter correlations arise which reduce the 
accuracy with which the C 113 and C 333 quasi- 
moments are determined. This highlights the need 
always to test for significant fourth-order terms in 
studies of skewness: such terms may substantially 
increase the demands on data accuracy and resolution 
relative to the intrinsic 'distinguishability' of the 
skewness. 

We are grateful for a number of helpful discussions 
about anharmonic structure refinement with W. F. 

Kuhs, who has also played a large part in the collec- 
tion and analysis of the PbTiO3 data. The work is 
part of a research programme funded by the Science 
and Engineering Research Council. 
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Abstract 

The resolution function for MSssbauer y-ray scatter- 
ing and the thermal diffuse scattering (TDS) near 
the 444 reflection in silicon have been measured 
with high-intensity M6ssbauer radiation from the 
46.48 keV transition in 183W. A general analysis of 
the resolution function has been carried out for the 
first time which shows that its energy and momentum 
components can be factored independently with the 
energy resolution being determined by the M6ssbauer 
resonance. The half-widths of the momentum reso- 

* This material was prepared with the support of the US Depart- 
ment of Energy, Grant Nos. DE-AC02-83ER 45017, DE-FG02- 
85ER 45200, and DE-FG02-85ER 45199 A00. However, any 
opinions, findings, conclusions or recommendations expressed 
herein are those of the authors and do not necessarily reflect the 
views of DOE. 

lution ellipsoid were measured to be 0.011, 0.11 and 
1.13 A-1 in the transverse, longitudinal and vertical 
directions, respectively. The ratios of these half- 
widths are significantly different from those com- 
monly encountered in neutron scattering. These 
analyses indicate that the observed broad distribution 
of inelastic scattering in the TDS profiles is consistent 
with published elastic constants for silicon. 

Introduction 

Thermal diffuse scattering (TDS) is coherent inelastic 
scattering due to lattice vibrations in a crystalline 
solid. In a conventional X-ray diffraction experiment, 
the TDS, with energy transfer of 0-0.1 eV, is not 
directly separable from the Bragg scattering intensity, 
since these energy shifts are smaller than the 1-5 eV 
intrinsic energy spread of common X-ray lines. The 
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TDS has a maximum intensity at the reciprocal-lattice 
points, thus adding to the apparent intensities of the 
Bragg peaks. In systems where the TDS intensity is 
a significant fraction of the elastic intensity, a knowl- 
edge of the TDS becomes essential for the determina- 
tion of accurate temperature factors and detailed 
electron-density distributions. The TDS contribution 
can be calculated if the phonon dispersion relations 
and the volume observed in reciprocal space are 
known. The TDS contributions for a number of 
specific types of scans around the reciprocal-lattice 
point have been calculated (Nilsson, 1957; Cooper 
& Rouse, 1968; Willis, 1969) with sound velocities 
averaged over all directions. 

In order to measure the TDS contribution experi- 
mentally, the elastic scattering must be separated from 
the inelastic scatteing. The small energy width of 
M/Sssbauer lines suggests a direct method of measur- 
ing the elastic scattering fraction, since inelastic scat- 
tering of energy transfer larger than the resonant 
width is not absorbed resonantly (O'Connor & Butt, 
1963). Several MSssbauer scattering studies of TDS 
in silicon have been performed with the 14.4keV 
transition in 57Fe (Ghezzi, Merlini & Pace, 1969; 
Albanese, Ghezzi, Merlin & Pace, 1972; Kashiwase 
& Minoura, 1983; Krec & Steiner 1984). Owing to 
the low intensities available from the 57Co sources, 
these experiments were run with large angular diver- 
gences (low momentum resolution), in order to obtain 
adequate counting rates. Thus the observed TDS 
intensities in these earlier studies represented an 
integration over a large fraction of the Brillouin zone. 
The development of y-ray diffraction instruments 
using intense sources (Schneider, 1974, 1983; Yelon 
& Ross, 1982) led to the construction of a high- 
intensity M/Sssbauer scattering instrument (Yelon, 
Schupp, Crow, Holmes & Mullen, 1986), which has 
allowed the TDS to be observed with much higher 
momentum resolution. These measurements have 
given motivation for a resolution-function analysis, 
analogous to the general procedure presented by 
Cooper & Nathans (1967) for neutron diffraction, 
appropriate for M6ssbauer y-ray scattering. 

Experiment 
The vibrational spectrum of silicon has been studied 
extensively by a variety of techniques. The dispersion 
curves have been mapped by thermal neutron scatter- 
ing and modeled theoretically (Dolling & Cowley, 
1966; Nilsson & Nelin, 1972), so that the momentum 
dependence of the vibrational spectrum is very well 
known. In addition, large perfect crystals are readily 
available, making silicon a convenient sample for 
evaluating a TDS separation method. Perfect crystals 
were desirable for this type of experiment because 
the very narrow elastic Bragg peak allowed the TDS 
to be observed more easily. The sample in this study 

was a 5 . 5 x 3 . 0 x 0 . 6  cm perfect silicon crystal, cut 
parallel to the (220) lattice planes. 

The y-ray diffractometer at the University of Mis- 
souri Research Reactor, QUEGS (quasi-elastic 
gamma-ray scattering), uses an intense M6ssbauer 
source cooled to 77 K. The 46.48 keV transition in 
183W (from the decay of 183Ta) was used in this study. 
Nominal 70Ci (1 C i=37  GBq) sources were pro- 
duced by one-week irradiations in the flux trap of the 
University of Missouri Research Reactor, which has 
a thermal flux of 4 x 1014 neutrons cm -2 s -1, by suc- 
cessive neutron capture from 18]Ta. A LiF(200) crystal 
monochromating filter was used to reduce back- 
ground by preventing other y-rays and X-rays present 
in the source from reaching the sample position, as 
shown in Fig. 1. The sample was mounted on a rotary 
stage in symmetric Laue geometry. Four absorbers of 
enriched ~83W metal powder in a plastic matrix were 
mounted in a paddle-wheel arrangement on a vertical- 
axis rotor. These absorbers could be driven at constant 
velocities ranging from 0.64 to 320 cm s -l ,  giving an 
appropriate velocity range for the very broad 
46.48 keV Mfssbauer transition, which has a natural 
width of 3-2 cm s -~ (Lederer & Shirley, 1978). The 
detector was a 2.5 cm diameter x 1 cm thick intrinsic 
Ge detector, which provided nearly 100% efficiency 
at 46.48 keV. In addition, the 1 keV energy resolution 
given by the detector allowed good separation of the 
resonant and non-resonant 46.48 keV y-rays from 
other y- and X-rays, with a single-channel analyzer. 

After each irradiation the sources were cooled to 
liquid-nitrogen temperature, and the intensities of the 
y-rays scattered from the LiF crystal were measured 
at a range of absorber velocities. Because of the large 
elastic constants of LiF and the use of a low-angle 
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Fig. 1. Schematic drawing of the QUEGS instrument. A radius 
arm pivoted at the sample axis keeps the detector collimator 
precisely directed towards the sample as 20 is changed. 
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reflection, the scattering observed for the LiF(200) 
Bragg peak is essentially 100% elastic (Mullen & 
Stevenson, 1978), providing a convenient standard 
for determination of source and absorber resonance 
characteristics. The parameters of the resonance were 
determined by fitting the observed absorption curve 
to a Lorentzian shape using a least-squares procedure. 
The resonance absorption fraction Pel(0) observed 
for the elastic LiF(200) peak is defined by 

P¢,(O)=[I(oo)-/(O)]/[I(oo)-B], (1) 

where I(oo) is the counting rate for an infinite absor- 
ber velocity, I(0) is the counting rate for a zero 
absorber velocity, and B is the background counting 
rate. Typical resonance curves yielded a value for 
P~l(0) of 0.27 and an experimental width of 5.5 cm s -~. 
Preliminary scans to align the crystal were performed 
while moving the absorbers at a constant velocity 
(19.2 cm s -~) far greater than the resonance width. 
Since the 'paddle-wheel' absorber arrangement pro- 
duced a variable absorber thickness, all counting 
times corresponded to an integral number of rotor 
revolutions, which required the use of a non-zero 
on-resonance velocity. The isomer shift of the reson- 
ance was found to be about 1% of the line width and 
has been neglected in this analysis. The elastic and 
inelastic scattering near the silicon 444 reflection were 
measured using an 'on-off' method, where the instru- 
ment alternately counted at a velocity vt of 
0.64 cm s -~, well within the resonance width, and at 
a velocity Vh of 19"2 cm s -~, about six times the natural 
line width. The elastic fraction was determined by 

1 a I(Vh) - l ( v , )  

R~'-Pe,(O) b I(Vh)--B (2) 

where I(Vh) w a s  the intensity observed at the 'off- 
resonance' velocity and l(vt)  was the intensity at the 
'on-resonance' velocity. The ratios a and b, given by 

a = [ I ( ~ ) -  I (O) ] / [ I ( vh ) -  I(/)/)] (3) 

and 

b = [ I ( ~ )  - B]/[  I(Vh) -- B], (4) 

are correction factors determined from the Lorentzian 
fit to the absorption curve, which account for the 
non-zero and finite values of the counting velocities. 
The relative intensities I~ and /in for elastic and 
inelastic scattering can then be determined from 

Ie~= a [ I ( v h ) -  l(v,)] (5) 

I in=Pe , (O)b[ l (Vh) -B] - Ie , .  (6) 

The background B was determined by two 
methods. In the first, the silicon crystal was rotated 
approximately 5 ° from the Bragg-angle setting. This 
method had the disadvantage that the TDS intensity 
at this angle was included, but this intensity was 

expected to be very low because of the high momen- 
tum resolution. In the other method, a 0.075 cm thick 
Cd foil was placed between the source and the mono- 
chromator. This thickness was enough to attenuate 
99.997% of the 46.48keV intensity, but allowed 
higher-energy photons to reach the sample and detec- 
tor. Since the two methods agreed, it was evident that 
the principal source of background was Compton 
scattering and fluorescence radiation entering the 
single-channel analyzer window due to the interaction 
of the higher-energy y-rays with the lead shielding. 
In both cases, the background could be separated 
into a component which decayed with the 5.1 day 
~83Ta activity, and a nearly constant component due 
to the 115 day ~82Ta activity and room background. 

Data were collected for points near the (444) 
reciprocal-lattice point. Fig. 2 shows a series of points 
in a 0 scan. The elastic intensities were fitted to a 
Gaussian profile, giving a resolution half-width of 
0.011 ,~-~ in this direction, transverse to the scattering 
vector Q. Within the elastic half-width, the inelastic 
intensities decrease slowly with increasing q = Q - G, 
the distance from the Bragg peak. Fig. 3 shows a 0-20 
scan parallel to Q. The resolution half-width here is 
ten times broader at 0.11,&-~, and the greater 
decrease in the inelastic scattering shown here is due 
principally to the larger q range. The 0-20 scan was 
repeated with a 25% larger LiF monochromating 
crystal to increase the intensity, causing a change in 
resolution width. The solid circles are the elastic data 
with the smaller LiF crystal, and the open circles are 
the corresponding inelastic data. The solid squares 
are the elastic data with the larger LiF crystal, and 
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Fig. 2. Elastic (closed circles) and inelastic (open circles) scatter- 
ing intensities for a 0 (transverse) scan through the 444 Bragg 
reflection in silicon. The line through the elastic points is a 
Gaussian, and the line through the inelastic points was deter- 
mined by the numerical integration procedure described in the 
analysis section of the text. 
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the Gaussian is from a least-squares fit to these points. 
The difference in width between the two sets of data 
for the elastic peak is readily apparent. The open 
squares are the inelastic data collected with the larger 
LiF crystal, and the calculated inelastic intensity 
profile shown here has been calculated for the resol- 
ution volume of this second scan. For the inelastic 
intensity profiles, the difference between these two 
cases was not evident in these data. 

Analysis 
For the QUEGS instrument, the incident beam origi- 
nates in the 183Ta source. The resonant part of the 
46.48 keV intensity has an intrinsic width of 5 p.eV, 
and the non-resonant part is broadened through 
phonon processes in Ta. The LiF monochromating 
filter prevents radiation of other energies present in 
the source spectrum from reaching the sample. This 
means that, in contrast to monochromators in neutron 
and X-ray instruments, the monochromating filter in 
QUEGS does not determine the efiergy distribution 
of the incident beam. This fact is the departure point 
for the resolution-function analyses presented here 
for M6ssbauer diffraction. 

Since AE/E is 10 -1° (51xeV/50keV) for the 
incident beam, and only of order 10 -6 between the 
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incident and final TDS-shifted energies, the incident 
and final wave vectors k~ and k I can be considered 
to be of equal magnitude and to form the surface of 
a sphere, as shown in Fig. 4 for the scattering geometry 
used in these analyses. A particular instrumental set- 
ting determines the initial and final wave vectors, k ° 
and k~, which are related to the scattering vector QO 
by QO = k ~ - k  °. These vectors all lie in the xy scatter- 
ing plane, with QO being parallel to the x direction 
and perpendicular to the y direction. Angles 
measured within the scattering plane are denoted by 
0 and angles in directions perpendicular to the plane 
are denoted by ~o. 

If we recall that E~ = (h/2~-)to~ = (h/27r)cki, with 
k, = Ik,I, the photon number distribution as a function 
of wave vector in the incident beam may be written as 

s(k,) = sn(k,) + s~(k,), (7) 

where s,,(k~) and sr(k~) are the non-resonant and 
resonant components, respectively. The resonant 
component, s~(k~), is a Lorentzian distribution of 
photons centered at the transition energy with a 5 lxeV 
width. The total flux of 7-rays at the sample (cm -2 s- z) 
is defined by ( ~ ) t o t a l  = clg°~s(k~)dki, where ~o is a 
normalizing flux proportional to source strength. The 
distribution function for the photons incident upon 
the sample becomes 

Pr.(k,)  = I'm(k,. 0,. ¢ , )  

= [s.(k,)  + st(k,)] exp ( -½{[ (Oi -O°) la i ]  2 

+ [ ( ~ , _  ~o)/~,]2}). (8) 

where the horizontal and vertical divergences are 
approximated as Gaussian distributions character- 
ized by the parameters ai and/3 ,  respectively, in the 
manner of Cooper & Nathans (1967). The probability 

o 
L kl  

100 0 A(p! 

Ak |  

_ .  _ .  -O:.,oooroe ., o., 0.o 

Fig. 3. Elastic (closed circles) and inelastic (open circles) scatter- Ak'--"k~)'/" .~.^ y / J  xx'y 
ing intensities are shown for a 0-20 (longitudinal) scan through I 
the silicon 444 with the smaller of  the two LiF monochromating- 
filter crystals. Also shown are the elastic (closed squares) and 
the inelastic (open squares) scattering intensities for a similar 
scan with the larger LiF monochromating-filter crystal. The line 
through the elastic scan with the larger LiF crystal is a Gaussian, Fig. 4. An illustration of a y-ray scattering experiment in reciprocal 
and the line through the inelastic points was determined by the space. The symbols are defined in the text. While k ° and k~ 
numerical integration procedure described in the analysis section appear to be different in the projection shown here, they are 
of the text. actually equal in magnitude. 
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of counting the scattered y-rays is 

Pd(ki)= Pd( ki, Oi, ~S) 

= A(k l )  exp ( -  ½{[(0f- O~)l,~s] 2 

+ [(q,s- ~}//3,]2}), (9) 

where 0~ is the angle in the scattering plane between 
k~ and the perpendicular to QO, ~0~ is zero, and a s 
and fly are Gaussi.an parameters describing the 
horizontal and vertical divergences of the detector. 
The absorber-detector acceptance function A ( k  I) is 
determined by the efficiency of the detector and the 
attenuation by the rotor, and is written (Mullen, 
Djedid, Holmes, Schupp, Crow & Yelon, 1986) 

(10) 

where e is the detector efficiency, Cre, is the photoelec- 
tric absorption cross section and N~ is the number 
density of each atomic species in the absorber; t is 
the absorber thickness. The resonant absorption cross 
section o-,(ky) has a Lorentzian dependence on the 
rotor velocity, fa is the recoilless fraction, and No is 
the number density of MSssbauer atoms in the absor- 
ber. The observed counting rate I is then given by 
the integral 

I =  cdP ° ~ P,,,(k,, 0,, q~,)(d2o-/dto dn)Pd(ky ,  0,, q~s) 

x cos q~ cos q~i dk~ dks dO~ dOy dq~ dq~i, (11) 

where dEo'/dto dO is the double differential scattering 
cross section of the sample, and c is the velocity of 
light. Within the angular resolution of the instrument, 
the components of the general scattering vector Q = 
k f - k ~  can be written 

Qx = ks sin 0y cos c y -  k~ sin 0i cos ¢~ (12a) 

Qy = ky cos 0y cos c y -  ki cos 0~ cos ¢~ (12b) 

Q= = ks sin c s -  k~ sin ¢~, (12c) 

and the energy transfer is 

(h /27r ) to=(h /2¢r )ck f - (h /2¢r )ck , .  (12d) 

Since the change in the scattering-vector magnitude 
is very small in y-ray scattering, k~= k °=  k °, and 
0~- 0 0 o. = - 0 , =  Then the components of (Q°,to°) 
become 

QO = 2k o sin 0 ° (13a) 

Q ° =  Q ° = 0  (13b) 

and 

w°=0.  (13c) 

Since A~i, A~ I, A0~ and A0 s are small angles, the 
approximations that sin A = A  and cos A = 1 are 

valid. As mentioned earlier, since Aki /k  ° and A k l / k  ° 
are of the order 10 -6 or less, Ak I and Aki can be 
neglected relative to k. Under these approximations, 
it follows that 

A Q x = Q x - Q ° = k  ° c o s  O°(AOf-AOi) (14a) 

A Q y = Q y - Q ° = k ° s i n O ° ( A O y + A O , )  (14b) 

AQ z : Q~ _ QO = kO(A~y- A~,) (14c) 

Aw = w - w ° = c( Ak¢ - Aki). (14d) 

With these expressions, (11) can be rewritten in the 
form 

I = [ 4)o/(kO)3 sin 20 °] 

x I I (d2o- /dwdD)R(AQ,  Ato) daAQdAto, (15) 

where R(AQ,  Aw) is the instrumental resolution 
function, which is defined by 

R(AQ,  Ato) = ~  P,,,(k, 0,, q~,) 

X Pd( ky, Os, q~y) dAq~ dAk~. (16) 

This resolution function describes the volume in 
momentum space and the range of energy in which 
scattering processes can contribute to the observed 
intensity for a given instrumental setting. The reso- 
lution function can be separated into horizontal, ver- 
tical and energy components, to give 

R ( A Q ,  A w ) = H ( A Q x ,  A Q , ) V ( A Q z ) E ( A w )  , (17) 

where 

H ( AQx, AQy) = exp {-I[(AO~/ai) 2 + (AOT/cef)2]} 

V(AQz) = ~ exp {-I[  (A~//3~) 2 + ( A~yl fly)2]} d A ~  

and 

E(Aw) = ~ [s,(/q) + sr(~)]A(/9)  dAk,. 

First, consider the horizontal component H. From 
(14a) and (14b), 

AO,=-½[(AQ,, /k  ° cos O°)+(AQy/k  ° sin 0°)] (18a) 

AOr=½t(AOx/k ° cos O ° ) - ( A Q y / k  ° sin 0°)]. ( lgb) 

Then 

where 

H = exp {-½[M,, AQ~ + M2~ AQ~ 

+ (M,2+ M2,) AQ,, AQy]}, (19) 

M,, = ¼[1/(k°) 2 cos 2 0°][(1/a,) 2 +(1/cey) 2] 

M22 = -~[ 1 / (k°) 2 sin 2 0°][ ( 1 / a,) 2 + ( 1 / ay)2] 

M12 = M2~=¼[1/(k°) 2 sin 0 ° cos 0 °] 

x [ (1 /~ , )2_(1 /~ j )2 ] .  

The vertical component can be evaluated by substitut- 
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ing Aq~f = AQ~/k°+ Aq~ into the expression 

V(AQz) ~exp 1 2 = {-~[A~o,(1//32+ 1//3}) 

+ A~o,(2Aez / fl}k °) + AQ2 / fl}(k°)2]} d A~o,. 

(20) 
The vertical component of the resolution is then 

v(ZlQz) 2 2 2 = (2zrfl,fl:/fl, + flEe) '/2 exp (-½M33 AQ2), 
(21) 

where 

M33 = 1/(k°)2(fl 2 + fl~). 

The resolution effects described so far are features 
of the instrument itself, independent of details of the 
sample. The observed momentum resolution for a 
single crystal also depends on the horizontal and 
vertical mosaic spreads rth and r/~. As discussed by 
Werner & Pynn (1971), mosaic has the effect of chang- 
ing the M U of (19) and (21) to 

M~= M o -  Mi2M~2/[(1/ rthQ°)2 + M22] (22a) 

for i, j = 1, 2 and 

M~3 = M33- M23/[(a/rh, Q°)2+ M33] (22b) 

for i = j = 3 .  
The resolution function in momentum may now be 

written 

R( A Q)=exp (-½ ~" M'k' ~Qk AQt) (23) 

where M~3 = M~I = M~2---0. This function descdbes- 
a volume in momentum space which can be visualized 
as a three-dimensional ellipsoid with Gaussian half- 
width parameters. 

Evaluation of E (Ato) is mathematically more com- 
plex, because details of the source and absorber must 
be included. If (from 14d) Akf=Ato/c+Akj is sub- 
stituted into the expression for E(Ato), it becomes 

E ( Ato ) = ~ [ sn( Aki) + Sr( Aki) ]a (  Ato / c + Aki) d Ak i. 

(24) 

Although this integral can be evaluated numerically 
(Mullen et al., 1987) it is operationally most appropri- 
ate to represent E(Zlw) by the measured line shape 
which in the present case can be fitted adequately by 
the Lorentzian 

E(Aw) = C -  D/[1 + XZ(Am°)], (25) 

where C and D are constants determined respectively 
by the source line shape and recoilless fraction, and 
by the photoelectric and resonant absorber cross sec- 
tions, and 

X ( Aw °) = ( h/2cr)( Ato - Ato°)/ (F~xp/2), (26) 

where Fexp is the experimental line width, and Ato ° 
is the effective center of the resonance, which can be 

changed by varying the rotor velocity. For very accu- 
rate evaluations of elastic intensity it is necessary to 
consider a more precise represe.ntation of the line 
shape than given by the Lorentzian used above. 

The effective elastic-energy resolution function of 
the on-off method is expressed in terms of equation 
(25) by 

Eel(Ato)=aD{1/[l+X2(vl)]--l/[l+X2(Vh)]}. (27) 

The first term corresponds to scattering of zero energy 
transfer. The second term includes the small fraction 
of the total inelastic scattering which is within the 
window at Vh = 19"2 cm s -1, corresponding to an 
energy transfer of 301~eV. The corresponding 
expression for the inelastic scattering is 

Ein (AtO) = bPel(O)C - aD/[ 1 + X2(D/)] 

+[a-bP~,(O)]D/[l+X2(Vh)]. (28) 

Since the value of 1/[I+X2(Vh)] is small, the 
expressions become 

E~,(aw) = aD/[1 + xZ(v,)] (29) 

and 

Ein(Ato)=bP~,(O)C-aD/[l+X2(vt)]. (30) 

In effect, Ei,(Aw) is an integration over all of the 
inelastic scattering intensity within the momentum- 
space volume described by H(AQ,,, AQy) V(zaQz). 

The reliability of the above calculations can be 
demonstrated by comparison with experimentally 
measured quantities. The incident-beam angular 
parameters are dependent on the size of the source, 
the size and mosaic of the LiF monochromating filter, 
and the collimation. For this work, the mosaic of the 
LiF monochromating filter determines the horizontal 
incident-beam divergence, with an angular spread of 
ai = 0.0012 rad. The vertical divergence is determined 
primarily by the height and distance of the source, 
which give an angular spread of/3i = 0.017 rad, but 
is complicated by the presence of the monochromat- 
ing filter, which results in a smaller effective angular 
spread for a /3i of 0.011 rad. The scattered-beam 
angular parameters are determined by the detector 
collimation, which is determined by a slit 2.22 cm 
high, 0.51cm wide and 78.7cm away from the 
sample, giving a :=0 .0027 rad and fl :=0.011 rad. 
These parameters can be determined independently 
by measuring intensity contours for a Bragg reflection. 
With an LiF crystal, contours measured for a series 
of reflections with the same instrumental parameters 
used in the silicon experiments yielded values of 
ai = 0.0010 and czf-- 0.0024 rad. For the vertical 
parameters,/3i and fly cannot be measured separately, 
but a measurement by tilting the LiF crystal gives a 
value of 6.9/~2 for the parameter M33. 

The coherent scattering cross section may be 
described as a sum of elastic and one or more phonon 
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processes (Willis, 1969; Cochran, 1966). The one- 
phonon cross section may be written 

3n 

(d2o-/dto dO) ,= lF (Q) l  2 Y, IQ.ej(q)l  2 
j = l  

x [ Ej (q)/mm~(q)] [ (27r)3/V~en] 

x 8 ( Q - G - q ) 8 ( m -  %), (31) 

where 

F ( Q ) =  ~ ft(Q) exp ( iQ . r t ) exp[ -Wt (Q)]  
/=1 

is the structure factor for the reciprocal-lattice point 
G, q = Q - G  is the vector from the reciprocal-lattice 
point, Vcen is the unit-cell volume and m is the atomic 
mass. The ej(q) are the three phonon polarization 
vectors, %(q) are the phonon frequencies, and Ej(q) = 
(h/2"n')toj(q)((nj)+½) is the total phonon energy in 
state j. In the structure factor, J~(Q) is the atomic 
form factor, r; is the position of the lth atom in the 
unit cell, and W~(Q) is the Debye-Waller factor. 
The phonon frequencies near the Bragg peak can be 
calculated from the elastic constants, which for 
Si are C11=1.66, C12=0.64 and C44=0.80 (all 
xl0~l N m -2) (Huntington, 1958). 

The expected value of the TDS intensity may be 
calculated by integrating (33) over the momentum- 
space volume observed at a given setting. For the 
silicon calculation at room temperature, the acoustic 
phonon scattering dominates. For small phonon wave 
vectors, (h/2~r)to ~ kT, which gives Ej(q) = kT. Also, 
since q ~ Q, Q can be taken as a constant, QO, and 
consequently F(Q °) is constant. The integral to be 
evaluated to give the total one-phonon scattering 
intensity becomes 

I = O°[F(Q°)I2/(k°)3 sin 200 

x Z [Q°.ej(q)12[kT/mw~(q)] 
j = l  

x R(AQ, Ato)[(2~-)s/Vc,,,] 

x S ( Q - G - q ) 8 ( w - % ) d S  AQdAw. (32) 

For the case of a small region near a Bragg reflection 
at a constant temperature, the variable part of the 
integran6 becomes 

~ [Q° • ej(q)12[ 1/o-,~(q)] exp (-½ Y~ Mk, AQkAQ,). 
j = l  ki 

(33) 

The integration has been performed numerically by 
an Euler-MacLaurin summation method for a num- 
ber of instrument settings in both transverse and 
longitudinal directions, to show quantitatively how 
the thermal diffuse scattering depends on q in these 
directions. The step sizes were chosen to be small 

compared with the Gaussian widths of the momen- 
tum-resolution function. The phonon frequencies and 
the polarization vectors were calculated in the long- 
wavelength limit for each point on the integration 
grid. 

The calculated TDS profiles were compared with 
the measured intensities by performing a one-param- 
eter (intensity) least-squares fit to the data. In both 
the transverse (Fig. 2) and longitudinal (Fig. 3) direc- 
tions, these fitted profiles were in agreement with the 
data within the experimental uncertainties. Detailed 
investigation of the dependence of the calculated 
profile on resolution and the elastic constants 
revealed that transverse modes propagating in a direc- 
tion perpendicular to the scattering plane dominated 
the observed phonon intensity, because of the large 
acceptance in the vertical direction. 

Discussion 

This study differed from the earlier extensive M6ss- 
bauer studies of silicon TDS (Albanese et al., 1972; 
Krec & Steiner, 1984) in that the higher intensity 
available allowed much greater momentum resolution 
in shape between the elastic Bragg intensity, which 
is seen in only a very small region of reciprocal space, 
and the much broader TDS intensity distribution. The 
TDS in silicon has also been measured in elastic 
neutron scattering (Graf, Schneider, Freund & 
Lehmann, 1981) with perfect crystals of varying thick- 
ness. This method utilizes the fact that elastic scatter- 
ing is essentially independent of thickness in the 
dynamical limit, while the weaker TDS varies with 
thickness according to the kinematical limit. This 
technique gave good results, but still at somewhat 
lower momentum resolution than the present work. 
The variable-thickness method is limited, however, 
to materials for which perfect crystals of varying 
thickness are readily available. 

The calculated intensity and distribution of the 
inelastic scattering is strongly dependent on the size 
and shape of the momentum-resolution function. In 
contrast to neutron diffraction, the energy resolution 
• is independent of the momentum resolution, and its 
slope cannot be varied, for example, to be focusing 
for transverse acoustic phonon branches. The M6ss- 
bauer resolution function is energy focused only when 
the dispersion surface has zero slope, for example at 
the zone boundary or for many optic branches. The 
measured half widths of the momentum-resolution 
ellipsoid for the silicon 444 of 0.011, 0.11 and 
1.13 A -l, respectively, for AQx, AQ, and AQ~ can be 
compared with the corresponding values of 0.02, 0.06 
and 0-08A- '  for a typical neutron instrument 
(Cooper & Nathans, 1967), recalling that the energy 
and the momentum transfers in neutron scattering 
are not independent. The vertical resolution is 
especially poor compared with neutron scattering 
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because of the short wavelength. This fact at present 
limits the amount of detail available in the TDS 
profiles, and direct extraction of the elastic constants 
is not possible. The vertical resolution can be 
improved by the incorporation of horizontal Soller 
slits, such that the observed TDS profiles would fall 
off more quickly with q in both the transverse and 
longitudinal directions. If the counting-rate reduction 
were not too severe, this improvement would provide 
greater detail within the limits of the one-phonon 
model. 

In summary, the analysis of the resolution function 
for MSssbauer y-ray scattering presented here has 
led to a good understanding of the strengths and 
limitations of this experimental probe. This better 
understanding is crucial to the interpretation of TDS 
measurements and of direct measurements of inelastic 
and quasi-elastic scattering which are planned for the 
QUEGS instrument. 

The authors thank S. A. Werner for suggestions 
leading to a better understanding of the resolution 
function. 

References 
ALBANESE, G., GHEZZI, C., MERLINI, A. & PACE, S. (1972). 

Phys. Rev. B, 5, 1746-1757. 

COCHRAN, W. (1966). Phonons in Perfect Lattices and Lattices with 
Point Imperfections, edited by R. W. H. STEVENSON, pp. 153- 
160. Edinburgh: Oliver & Boyd. 

COOPER, M. J. & NATHANS, R. (1967). Acta Cryst. 23, 357-367. 
COOPER, M. J. & ROUSE, K. D. (1968). Acta Cryst. A24, 405-410. 
DOLLING, G. & COWLEY, R. A. (1966). Proc. Phys. Soc. London, 

88, 463-494. 
GHEZZI, G., MERLINI, A. & PACE, S. (1969). Nuovo Cimento B, 

64, 103-115. 
GRAF, H. A., SCHNEIDER, J. R., FREUND, A. K. & LEHMANN, 

M. S. (1981). Acta Cryst. A37, 863-871. 
HUNTINGTON, H. B. (1958). Solid State Phys. 7, 213-351. 
KASHIWASE, Y. & MINOURA, M. (1983). Jpn J. Appl. Phys. 22, 

L49-L51. 
KREC, K. & STEINER, W. (1984). Acta Cryst. A40, 459-465. 
LEDERER, C. M. & SHIRLEY, V. S. (1978). Table of Isotopes, 7th 

ed. New York: Wiley. 
MULLEN, J. G., DJEDID, A., COWAN, D. L., SCHUPP, G., XIE, 

Q., CROW, M. L., CAO, Y. & YELON, W. B. (1987). In prepar- 
ation. 

MULLEN, J. G., DJEDID, A., HOLMES, C., SCHUPP, G., CROW, 
M. L. & YELON, W. B. (1986). Nucl. Instrum. Methods, B14, 
323-340. 

MULLEN, J. G. & STEVENSON, J. R. (1978). AlP Conf. Proc. 38, 
55-57. 

NILSSON, G. & NELIN, G. (1972). Phys. Rev. B, 6, 3777-3786. 
NILSSON, N. (1957). Ark. Fys. 12, 247-257. 
O'CONNOR, D. A. & Bu-rr, N. M. (1963). Phys. Lett. 7, 233-235. 
SCHNEIDER, J. R. (1974). J. Appl. Cryst. 7, 541-546. 
SCHNEIDER, J. R. (1983). J. Cryst. Growth, 65, 660-671. 
WERNER, S. A. & PYNN, R. (1971). J. Appl. Phys. 42, 4736-4749. 
WILUS, B. T. M. (1969). Acta Cryst. A25, 277-300. 
YELON, W. B. & ROSS, F. K. (1982). Nucl. lnstrum. Methods, 193, 

285-295. 
YELON, W. B., SCHUPP, G., CROW, M. L., HOLMES, C. & 

MULLEN, J. G. (1986). Nucl. lnstrum. Methods, B14, 341-347. 

Acta Cryst. (1987). A43, 645-653 

On the Fast Rotation Function 

BY JORGE NAVAZA 

Laboratoire de Physique, Tour B, Centre Universitaire Pharmaceutique, 92290 Chatenay-Malabry, France 

(Received 5 February 1986; accepted 2 April 1987) 

Abstract 

An analysis of the mathematical structure of the rota- 
tion function is presented. The effect of truncation of 
the expansions used in the fast rotation function is 
discussed and an alternative procedure of calculation 
which drastically reduces the errors is proposed. A 
method of sampling on spherical surfaces is 
developed. The rotation function can thus be obtained 
from the values it takes at the sampling points. The 
method can also be used to compute expansions in 
spherical harmonics of Patterson functions restricted 
to arbitrary domains. Topological properties of the 
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rotation group are used to obtain distortion-free plots 
of the different sections of the rotation function. 

Introduction 

In Crowther's formulation of the fast rotation func- 
tion, emphasis is placed on the expansion of the 
Patterson functions in terms of the spherical har- 
monies and.the spherical Bessel functions (Crowther, 
1972). These expansions lead to slowly convergent 
series and the relative errors of some contributions 
can exceed 100% for reflections corresponding to 
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